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I. OVERVIEW

The title of the work reported herein is quite similar to that used for
the investigator's previous Battelle report [1]. Indeed, if the word "modern"
were omitted they would be identical. Since that report was prepared, Kay &
Marple [2] have written a comprehensive tutorial paper, "Spectrum analysis - a
modern perspective," thoroughly outlining in 40 pages this topic which has so
many potential application areas to military radar signal processing, e.g.,
array processing, clutter suppression, and target identification. It is
pointed out in the literature [31 that the former two topics are basically spa-
tial and spectral variations of the same problem, namely to solve

RA X ()

for a set of variables (the vector A) given some known information about the
signal (the autocorrelation matrix R) and some desired characteristics (the
vector X). Kay & Marple's paper also includes 278 references, many of which
have been incorporated into this report.

The basic interest in Modern Spectral Analysis (MSA) has centered on its
superresolution feature, i.e., the ability to resolve two closely-spaced sinu-
soids. By closely-spaced, one implies a frequency separation less than I/NT,
where N is the number of samples and T is the sampling interval, which is the

accepted resolving capability of the N-pt. Discrete Fourier Transform (DFT).
This claim to superresolution has been attacked by Rihaczek [4] who observed
that the detailed target information required is lacking due to noise or
clutter. In a rebuttal Jackson [5] pointed out that considerable progress had
been recently made, citing among other things Marple's algorithm [61 which

both-significantly reduces the frequency estimation errors associated with
Andersen's Burg-algorithm [7] for a low Signal-to-Noise Ratio 'qNR) and vir-
tually eliminates the spectral-line splitting associated with a high SNR.
Indeed, in 1979 Tranter [81 observed many of these original deficiencies and
in a later study [9] virtually wrote off this particular MSA technique because
of noise problems. This author in last years report made a similar snap
judgement based on Tranter's reports which stated that a SNR of at least 55 dB

(later reduced by Shumway [101 to 40 dB) was required to resolve two closely-
spaced sinusoids. It turns out that the problem lies in the technique used to
estimate the order of the prediction filter, and that it works for a SNR as
low as 20 dB, provided the prediction order is increased. Based on the
widespread interest in MSA throughout the signal processing community, the
U.S. Army would be well advised to continue monitoring progress in this area
for potential applications.

This report contains a brief overview in Section II emphasizing the Least
Squares Spectral Estimation (LSEE) technique associated with the mth -Order
Autoregressive (AR(m)) process. Section III deals with the application of MSA
to the design of a Prediction Error Filter (PEF) to suppress clutter.
IronicalLy the presence of clutter is one reason given by Rihaczek for
rejecting MSA techniques. Section IV presents spectral estimation examples

for AR(m) processes and noisy sinusoids generated from a computer program
which is described in the Appendix. Some results and recommendations based on
this study and the work reported in the literature are recorded in Section V.
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II. MODERN SPECTRAL ESTIMATION TECHNIQUES

The basic problem is to estimate the power spectrum of a set of N samples
{x(k)}. The development outlined in this section is a summary of the material

found in Kay and Marple's tutorial [2) and is by necessity kept brief. The
most general linear model is the Autoregressive Moving Average (ARMA) model
described by the linear mth -order difference equation

m m
x(n) = E b(i)w(n-i) - T a(k)x(n-k) (2)

1=0 k=l

In digital filter terminology, a Linear Prediction Filter (LPF) is defined by
(w(n)} as the input sequence, {x(n)} as the output sequence, with {b(i)} the
feed-forward coefficients (FIR filter), and {a(k)} the feed-back coefficients
(FIR filter). The system function H(Z) is obtained by taking the Z-transform
of Eqn. (2) and solving for the ratio X(Z)/H(Z).

m
£ b(i)Z -

i=O ,(3)

H(Z) = 1-0 
(3)

m _
E a(k)Zk

k=O

where a(O) A I and some b(i) or a(k) can be zero subject to the constraint
a(m) # 0, i.e., the filter is of order m, denoted 0(m). The power spectral
density (PSD) of the output is given by

Ix(Z) = IH(Z) I 2Pn(Z) (4)

where Pn(Z) = 2T if the input sequence consisti of samples every Ts from a
white noise process of zero mean and variance a . The PSD as a function of
frequency is obtained from Eqn. (4) by replacing Z + exp(j2nfT) where f is a
continuous frequency measured in Hertz (Hz).

The general ARMA model can be decomposed into two simpler models, namely
Moving Average (all a(k) = 0, except a(O) = 1) and Autoregressive (all b(i) =

0, except b(O) = 1) which by Eqn. (3) can also be termed the all-zero and all-
pole models, respectively. The autoregressive (AR) model is the subject of
primary interest in this study. It follows from Eqn. (4), assuming white
noise input, that the AR PSD is

P(f) = cT (5)
m

1 + E7 a(k) exp(-j2tfkT)
k=1

The numerator is a scale factor; consequently, the relative PSD is completely
determined by knowledge of the parameter set fam(k)l of the AR process of
order m, AR(m), with the understandings that the parameter subscript m can be
dropped whenever obvious and am(O) = I for all m. Furthermore, the final
value in each set is known in the literature as the reflection coefficient

(Km), i.e.,

2



Km = am(m) (6)

The FIR digital filter with weights {am(k)}, x(n) as input and w(n) as output -

is called a Prediction Error Filter (PEF). The obvious question remains,
given a sample set {x(k)} how does one obtain (a(k)) in order to determine
P(f) from Eqn. (5).

A. Yule-Walker Equations (YWE)

The original developments for finding the {a(k)} for the Mth -order
LPF assumed knowledge of the autocorrelation values, which in theory are given
by

R(k) = E{x(1i+k)x*(n)} (7)

where E{ } implies statistical expectation and the superscript (*) complex
conjugation. The YWE

M
- E a(i)R(k-i) k > 0

1=1

R(k) =
M 2
E a(i)R(-i) + c k = 0

1=1 (8)

follow by substituting Eqn. (22 into Eqn. (7) and recognizing that

E~n(n+k)x*(n)} is non zero (=a ) only for k=0. The AR parameter set is
obtained by slecting M equations from the semi-infinite set of Eqn. (2) and
solving for a from the k=0 equation. In matrix form this is

[R(i-k)](M,M) x [a(i)](M,l) = - [R(i)](M,l) (9)

where subscript (x,y) implies a matrix of x rows and y columns. The matrix

[R(i-k)] is Hermltian and Toeplitz i.e., R(i,k) I R(i-k) = R* (k-i).
Rearranging Eqn. (9) and including the row for a yields

[R(i-k)I(M+I,M+I) [I a(l) ... a(M)]'(M+I,1 )  7

= [a2 0 0 ... O]'(M+,) (10

where prime ( ) implies a vector transpose. The YWE given by Eqn. (10) can be
solved for fa(i)} by inverting the matrix [R(i-j)] provided the first (M+I)-
lags of the autocorrelation are known. Because of the Toeplitz structure, the3
standard matrix inversion, requiring 0(M ) operations, can be replaced by the

Levinson-Durbin Equation (LDE), which only require O(M ) operations. The
technique is to recursively solve the AR(m) parameter set {am(k)} for m =
2,3,...,M using the algorithm

3



am(m ) A Km = a [R(m) + F am-.(i) R(m-i)]

am(i) = am-.(i) + Km a.-l(m-i)

2 1 Km 1 2 ] 2
C'm am-1

subject to the initial conditions

R( 1)
KI = R(0) (12)

2 2]

C [1- K, I R(O).

Since the desired order (M) of the LPF is not known a priori, Eqn. (11) can be
s9lved for successively higher-order values of m until the modeling error
am is reduced to an a~ceptabe value. Further, since IKm 1< 1, it follows
from Eqn. (11) that am+1 < am ; moreover, if the {x(k)} are truly samples of
an AR(M) process, the modeling error reaches an irreducible minimum am . The
poles of A(Z), the denominator of Eqn. (3), can be shown to lie within the
unit circle, i.e., the LPF is stable, or marginally stable (poles on the unit
circle) if the AR process consists only of sinusoids.

B. Maximum Entropy Spectral Estimation (MESE)

The concept of AR(m) modeling and associated LPF design has been shown
to be equivalent to the Maximum Entropy Method (MEM) proposLI originally by
Burg [11, 121, provided the autocorrelation lags are known and the random pro-
cess is Gaussian. Burg suggested that extrapolation of the m known correla-
tion lags should be performed in such a manner that the corresponding time
series has maximum entropy, i.e., the PSD should be as white as possible given
the known lags. The MESE is given by Eqn. (5) with the fa(k)} obtained from
solution of Eqn. (10).

C. Estimating the AR Parameters

Unfortunately, in a radar system the {R(k)} values are unknown and
all one can begin with are the N time samples {x(k)} from an assumed AR(m)
process. Although one might estimate the desired correlation samples by the
biased estimator.

N-k

R(k) _ I ' x(n)x (n+k) (13)

N n=l

it has been shown for short data records (N < 100) the YWE produces poor
spectral estimates.

4
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Figure 4. AR(4) spectral estimate using MLSA.

B. Noisy Sinusoid Estimation

The first problem to be examined is a noisy sinusoid given by

y(k) = A cos(0k + d) + n(k) (41)

where t . 2T fT and n(k) is a sample from a complex Gaussian process with zero2 c 2mean and variance c in either the real or imaginary component. The SNR (not
ir dB) is given by

2 2
a = A /2 (42)

and is applicable for both real and complex data. Swingler showed [451 that
the ,Ignal portion of Eqn. (41) when estimated by the ABA has a frequency
e't mato which differs from fc bv

18
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Figure 3. AR(2) spectral estimates using ABA.

The second example is a 40 sample AR(4) process with coefficients
(2.7607, -3.8106, 2.6534, -0.9238} and CNR = 50 dB. the spectral estimate
which results from setting the maximum allowed order (MM) equal to four in the
MLSA is shown in Figure 4. This spectrum is suggestive of that produced by
broadband-type (bandlimited white noise) jamming and presumably could be
suppressed in a fashion similar to clutter using a PEF. The algorithm ter-
minated at M=4 because the ratio of final-to-initial prediction error energies
was below TOLl = 0.001. Essentially, an identical result for M=4 was obtained
with the ABA; however, the three PEF-order indicators tabulated in Figure A-2
all predicted M > 4. Ulrych & Bishop observed that the histogram of absolute
minimum FPE-order indicators obtained from 100 estimates of AR(2) and AR(4)
processes was rather broad, but improved with significiant numbers at n=M if
MM was restricted to N/3. They also determined that the histogram of first
FPE minimum (vs. absolute minimum) was quite similar, an approach to selecting
M which is commonly used.

17



A. AR Model Estimations

Two AR models specified by Ulrych & Bishop f151 for real data were
used to verify the two algorithms and demonstrate the applicability of this
technique to wideband spectral estimation. The first example was a 20 sample
AR(2) process with coefficients {0.75, -0.50} and CNR = 50 dB producing a
theoretical spectrum which looks somewhat like weather clutter. The results
obained with MLSA for M=3 and M=4 are shown in Figure 2. The M=3 solution is
obviously not a good estimati; however, the M=4 solution is essentially iden-
tical to that shown in Ulrych & Bishop. Results obtained from the ABA for
M=3, 4 and 11 are shown in Figure 3. Obviously, the ABA does not produce as
accurate a prediction. Moreover, the M=11 example shows the effect of
overestimating M excessively. A change of N from 20 to 50 samples had no
noticable effect on the spectral estimates.

0.0

-4.000

-8.000

-12.000 I
/ I

-20.000.

-24.000

-28.000 M-4

-32.000

-36.000 \ M=3

-40.000 n , ,N I
0.0 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450

Figure 2. AR(2) spectral estimates using MLSA.
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Gibson and Haykin observed that the number of sections required is

at least equal to the number of spectral peaks, equal for sharp peaks, but
typically two or three for each broad peak such as clutter produces. They
demonstrated the adequacy of a notch filter (M=I) for a sinusoid and the effect
of changing M for a Gaussian shaped clutter spectrum, see Eqn. (27).
Increasing M from I to 3 essentially broadened the stopband to match the
clutter bandwidth while additional stages did little except to flatten the
passband gain. They also illustrated how to select tI when the clutter extent
is tc = 100 and signal duration ts = 20. Initial clutter modeling showed that
decoupling occurred when tj - 25 for W = 0.9. It follows from Eqn. (39) that
a = 2.64, and from their second choice of W = 0.95 with signal and clutter
present, that the new tI = 51 is consistent with setting tI = tc/M where a
second-order (M-2) PEF was specified. A flow chart for implementating the
recursive reflection coefficient computations for either method is provided

[43].

In two conference papers Gibson, et. al., studied the adaptive lat-
tice PEF using simulated [391 and actual [441 radar clutter data in complex
form. The earlier paper (1979) with simulated data employed Method I and
defined W = 0.95 and M = 2 based upon a large number of test cases. It was
observed that W is a function of the number of clutter samples (N) with W =
0.98 for N = 250 vs. 0.95 for N = 100. Published filter responses were shown
to be a function of CNR with little variation for CNR > 10 dB. When expressed
in terms of SIR, the average enhancement exceeded 20 dB for "average storm"

conditions and 16 dB for "serve storm" conditions. The latter reflects a
situation where the conventional MTI would not properly suppress the clutter
due to its increased bandwidth. The later paper (1981) tested the performance
of the lattice PEF employing Method II using actual radar returns from sta-

tionary and nonstationary clutter with and without targets present. The
improvement ratio (SCR-out over SCR-in for MTI or PEF) was always positive for
the PEF, ranging from 2 to 8 dB, whereas the range was -17 to +16 dB for the
MTI with poor performance associated with adverse weather conditions. The
radar used employed pulse staggering with four unique interpulse spacings. In
order to employ this data with the lattice filter, the signal returns were
subdivided into four groups each having five target samples and 25 clutter
returns. The subsets were filtered independently and the displayed graphs
represented the average of the four subsets for input, MTI and lattice PEF
outputs. The choice of adaptive weighting factor (U=0.6) and filter order
(M=5) were determined only after extensive testing, probably required by the

small number of samples (N=20) available.

IV. SPECTRAL ESTIMATOR PERFORMANCE

The maximum entropy and least squares spectral estimators were described

in Section II and their applicability to clutter suppression in Section III.
The purpose of this chapter is to present details regarding t heir applicabi-
lity to the spectral estimation of AR(m) processes and noisy sinusoids, both

single component and two sinusoids spaced closer than the DFT resolution
width. The computer algorithms ABA and MLSA are used for the MESE and LSSE,

respectively. A computer program which can generate noisy complex data
samples and estimate the spectrum using either algorithm is described in the
Appendix along with some typical examples.

15



exponentially weighted and eventually eliminated. Method II updates the
crosspower (numerator) and autopower (denominator) expectations separately,
which yields

vm+l(n) (36)Km+l in) -
Ym+l(n)

where

vm+l(n) = U . vm+i(n-1) - 2 fm(n) . bm(n-l)

(37)

ym+1(n) = U• ym+1(n-1) + fm(n)) 12 + tbm(n1) 12

with U being the new adaptive weighting factor and vm+l(O) - Ym+l (0) = 0.
The forward-backward prediction errors were defined in Eqn. (15). Method II
has the advantage of not assuming constant power and should work best with
nonstationary signals. However, it is more complicated computationally and
has a more complex convergence relationship. They also showed that Methods I
and II were special cases of Griffiths' algorithm. It was further
demonstrated that for Method II K, converged to its optimal value more rapidly
with a corresponding faster decrease in Iff(-) I. The problem of coefficient
decoupling was also addressed and shown to te a significant consideration.

Decoupling is a problem because initially all {Km} in the Mth -order
PEF adapt to the strongest spectral component. Eventually K1 adapts properly
and the remaining M-1 coefficients attack the next strongest component, etc.
Furthermore, residual coupling remains after the major decoupling occurs, thus
interfering to some extent with convergence properties of later stages. The
first stage decoupling time (tl) is proportional to i, i.e.,

t= , an (38)

where a is a dimensionless constant associated with a specific signal type.
For method I, it follows from Eqn. (35) that

W - exp(-a/tl) . (39)

Unfortunately, a similar expression does not exist for the weighting factor U
of Method II. Assuming the incoming signal consists of both clutter with
duration tc and signal with considerably smaller duration t., then

ts < t I < tc . (40)

As the filter order increases t, is set closer to ts, and for very large tc,
the upper limit is typically divided by an integer ranging from one to M, thus
insuring time for higher-order stages to converge.

14



rejected in favor of the original ABA because it required three times as many

complex multiplications for this application. He also rejected Andersen's
suggested modification [13], i.e., Eqn. (18) on the basis of sensitivity to
computational errors. The current RADC system can process 128 range cells and
allows 32 updates of the weight-Vector components during this dwell time.
Although currently operating with the Burg algorithm, the adapative processor
is reprogrammable. Documentation of the RADC system should be available
shortly.

C. Adaptive Lattice PEF

Gibson and Haykin in a series of paper [39] show that clutter
suppression can be achieved using an adaptive PEF with the lattice structure
as opposed to the more conventional Tapped Delay Line (TDL) used to implement
Eqn. (32). The lattice PEF structure was shown in Figure I and the recursion
relations were given by Eqn. (15). Burg's (harmonic-mean) algorithm states
that the optimum values of the reflection coefficients {Km } are given by the
ratio of the expectations of the negative crosspower to the mean value of the
two prediction error autopowers for that PEF stage (m). Makhoul [40] descri-
bes a variety of alternatives to the harmonic mean definition for calculating
{Km}, but concludes that Burg's is preferred "because it minimizes a reaso-
nable and well-defined error criterion", a view supported by Gibson [41]. If
adaptation were not required, i.e., the input signal was from a stationary
process, the {Km } for Burg's algorithm are given by Eqn. (17).

When clutter is to be suppressed in either the presence or absence
of a doppler-return signal, it follows that the PEF coefficients must be
updated routinely, i.e., adapted to changes in the radar return. Griffiths

142] compares the lattice and TDL filters from the viewpoint of adaptive
filtering and concludes that the lattice enjoys convergence advantages at the
expense of increased computations. The lattice structure for stationary pro-

cesses permits the independent optimization of each Km, which carries over to
some degree for the adaptive case. It is also possible to trade off adap-
tation rate and prediction error with filter length. Gibson and Haykin [43]
studied the properties of adaptive lattice PEF and proposed two methods for
recursive estimation of Km on an incoming sample-by-sample basis. Method I

adds a correction term to the previous value which yields

Km+l(n) = W . Km+i(n-1) + Am(n) . fm(n) . bin(n-1), (34)

where fm(n) and bm(n) are given by Eqn. (15), and

A.(n) - -2(0-W) (35)

Ifm(n) f2 + Ibm(n-1) I2

with

W = exp(-1/;) , (36)

where n is the length (in samples) required for the filter to adapt. The

adaptive weighting factor (W) is designed to insure that old estimates are
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Incorporating the adaptive whitening filter and the DFB in one step
has been reported by Sawyers [38, 25]. The resulting coefficients are
obtained from Eqn. (31) with R-1 obtained from Eqn. (25) using the MEM
algorithm. The coefficient set obtained from N samples in one dwell is used
to define the adaptive DFB coefficients for the next dwell in the same range
cell. Should a target be detected in that cell, the update algorithm is inhi-
bited so as not to suppress the target spectrum. Sawyers presents performance
results for a pulse-doppler radar (N = 32, M = 15) using a simulated inter-

ference spectrum including ground, rain and broadband jamming with clutter-to-
noise ratios of 50, 20, and 30 dB, respectively. The simulation assumes unit
signal voltage and unit thermal noise power per returned pulse. Optimally, a
SIR of 14.8 dB is possible for a particular doppler filter (fnT - 0.375) with
the actual design indicating 14.0 dB. The improvement is definitely a func-
tion of Doppler, as a second Doppler choice (fnT = 0.5625) Just below the
broad-band jamming has an optimal SIR of 11.9 dB with the actual result some
2.5 dB less. It is suggested that additional dwell averaging be invoked in
such cases, i.e., the reflection coefficient Km given by Eqns. (17) and (18)
becomes for D-dwell averaging

D

E Num(i)
i= 1

Km 2 D (33)

F Den(i)
i-i

where Den(i) is defined by Eqn. (18) and Num(i) is the summation expression in

Eqn. (17). Only limited results were presented for actual radar data and no
attempt was made to determine the SIR.

Nitzberg [23] reported an adaptive DFB, similar to Sawyers, designed
by General Electric for the USAF Rome Air Development Center, (RADC). This
system was implemented with the Burg algorithm and did a MESE for N = 16. It
appears that the estimated clutter spectrum for one range cell was used to

filter the clutter in the next cell as opposed to the same cell one dwell-time
later. There was no discussion of dwell averaging to improve the estimated
spectrum. Nitzberg did study the effects of a "Mismatch Loss" due to the
AR(M) spectrum not matching the true spectrum by investigating the
Clutter-to-Noise Ratio (CNR) after filtering vs. filter-order (M) for various
input CNR. The simulated clutter had a Gaussian spectrum, from which the
correlation matrix can be determined, hence the optimum weights from Eqn. (31)
and residual CNR decreased to within a few dB of the theoretical optimum. How
rapidly it converged to the optimum depended on the original CNR, e.g., if the
input CNR is 35 dB the residual is 4 dB, whereas for 65 dB the residual is
roughly 14 dB, which is some 10 dB above the optimum weight result. The

mismatch loss is also shown to be dependent upon the normalized clutter stan-
dard deviation (a T) and the relative separation of the clutter mean from the
doppler filter center frequency, increasing with the former and decreasing
with the latter as they increase in value. Nitzberg also discussed an
"Estimation Loss" due to the AR(M) parameters being estimated from data
samples as opposed to known values of the R-matrix. He showed that the esti-
mation loss tends to increase with the LPF order thus making it difficult to

6determine the optimum order. The more recent Marple algorithm [6] was

12



B. Adaptive Doppler Signal Processor

Other researchers [3, 34, 351 had proposed designing filters to
maximize the Signal-to-Clutter Ratio (SCR) as opposed to the conventional
match filter, which maximizes the SNR, where the noise is assumed to be white
Gaussian. The problem was that the clutter characteristics had to be spe-
cified a prioi. Two examples where this philosophy was employed were the
Hughes' Aircraft Co. designs of a Doppler Filter Bank (DFB) for the TPQ-37
artillery locator [36] and the U. S. Army Missile Command's Quiet Radar.
Basically, a conventional matched filter can be implemented for a given
Doppler shift (fn) using a Discrete Fourier Transform (DFT), whereas a filter
matched to a specified Signal-to-Interference Ratio (SIR) is obtained by maxi-
mizing

SIR = (w, )2  . (29)

wt Rw

Assuming uniform transmit weights, s is a steering vector defined by

s(n)t = [exp(-jt(N-l)fnT), exp(-jn(N-3)fnT, ... , exp (+j(N-1)fnT)], (30)

and R is the N x N matrix of correlation samples. The vector of filter coef-
ficients w can be obtained by solving

w(n) - Rl7s(n) , (31)

where the "n" is identified with the Doppler frequency fn- The solution of
Eqn. (31) depends on finding R-1 , which was discussed previously in Section
11.1. Such an inverse technique has a computational complexity of 9(N) to
0(N ) as opposed to direct inversion by Gaussian elimination of O(N ).
Another technique for estimating R-1 involves Kalman filtering which has a
computational complexity O(N ). This approach was used by Bowyer et al [37]
in designing an adaptive clutter filter for a problem involving ballistic
missiles where booster-tank break up upon atmospheric reentry caused a false
target. They observed that their Kalman estimator approach was far superior
to the earlier FIR filters which used feedback to adjust the weights and hand
a long convergence time on the order of NT (20 < N < 30). Their technique
assumed an AR(M) clutter model (2 < M < 4) with the spectral coefficients
{a(i) } obtained from the Kalman filter-used to construct a whitening filter

M
Hw(Z) - 1 - a a(i) Zi

i=l (32)

whose structure can be readily changed with the clutter. The entire N samples
were then whitened and sent to a conventional matched filter with coefficients
adjusted to reflect signal whitening. No attempt was made to integrate the
whitening process with the DFB. It was also pointed out that the estimator
memory is a drawback to using the Kalman filter algorithm. Consequently, if
the clutter is not extended in time, the estimates do not change rapidly and
it becomes necessary to introduce some mechanism such as exponentially fading
memory to insure proper adjustment.
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which can be approximated [27] with an error E I < 2.7 x 10- 3 by

Pg(F) = [C(O) + C(2)F2 + C(4)F 4 + C(6)F]- I  , (28)

with {C(n)} - {2.490895, 1.466003, -0.024393, 0.178257). It should be noted
that F represents the actual frequency normalized with respect to a parameter
which depends both upon the transmit frequency and the nature of the clutter.
The important point is that both forms can be considered as all-pole functions
and hence modeled as AR(M) processes where M is n/2 for the Butterworth model
(typically 2 < n < 4) and three (3) for the Gaussian-approximation model of
Eqn. (28). Since n in Eqn. (26) is not required to be an integer and the
Gaussian model is an approximation, a realistic M-value would be somewhat
larger. Obviously, larger M-values imply more computation and peaky spectral
approximations.

Hawkes and Haykin [28] developed a computer model for I&0 channel
(complex-data) clutter samples which assumes a large number of elemental
dipole scatters arranged in a two-dimensional (range and azimuth) array. The
model included Probability Density Functions (PDFs) to describe the dipole
rotation frequency, doppler shift due to clutter, and a factor to describe the
antenna pattern.

A. Clutter Spectral Estimation

Kesler and Haykin [29, 30j used Burg's MEM technique to estimate the
clutter PSD. The aforementioned computer data was used assuming a steady
dipole frequency and describing the doppler variations by a Gaussian PDF of
zero-mean and standard deviation a. Akaike's FPE algorithm was used to deter-
mine the appropriate choice for M. They also generated samples of AR(2) and
AR(4) processes (real-valued) which yielded rather poor MESE, looking neither
like the theoretical curves or each other as M was varied above and below the
FPE estimate. However, when complex data was used, either from the computer
model or an AR process, the resulting spectra were relatively insensitive to
the choice of M or N. It should be observed that N was typically quite large
( > 64) for the AR process and that the results were sensitive to start-up
effects, i.e., the number of AR-model samples ignored. However, the computer-
model data results looked similar to the theoretical spectrum for N as low as
16. By comparison spectra obtained by applying Welch's periodogram method
(Fourier analysis) to the same data yielded unacceptably broad spectra for N <
64. In later papers [31, 32] the MEM approach was applied to true radar
clutter (complex data) including ground, weather and birds. The ground and
weather clutter spectra were quite insensitive to N provided it was in the
range 10 to 30 samples or greater. The bird-spectra were quite variable with
N in agreement with variable spatial and temporal distributions within flocks.
Their conclusions were that good MESE could be obtained for a paricular range
bin using only one look. They also suggested that MEM might be used for on-

*line classification of various clutter sources. Hawkes and Haykin in an
earlier paper [33] had proposed an adaptive Moving Target Indicator (MTI) the
coefficients of which were chosen based on a decision as to what type of
clutter was encountered. This decision was based on applying the autocorrela-
tion of the incoming signal to a decision algorithm and comparing the output
against a set of precomputed clutter characteristics.

10
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where (t) implies a complex-conjugate transpose operation. The inverse matrix
is both Hermitian (R-1 = (R-I)t ) and persymmetric (symmetric about both
diagonal directions). The matrix A is N x N with the first N - M columns con-
sisting of (aM(k)} with (0,1,2, ... ,(N-M) leading zeros and {N-M-1), ... ,2,1}
trailing zeros respectively, plus M columns consisting of {am(k)}, m = 0 + M
arranged with the proper number of leading zeros (N-M for m=M up to N-I for
m=0). The matrix D is an N x N diagonal matrix with I/EM for the first N-M
diagonal elements and {1/EMI,..., I/El, I/E0 } for the remaining M elements.

Details regarding the derivation of Eqn. (24) beginning with the YWE are also
found in Herring [22]. Nitzberg [231 observed that it should be possible to
compute R71 using only the PEF set for m=M and suggested a technique for
complex-data based on Siddiqui [24]. Although Nitzberg's algorithm was not
published, Sawyers [25] independently presented such a solution assuming M <
N/2 and showed that (Z(i,j)} the elements of R- 1 are given by

Z(i,j) = a(i-l)a (J-1) + Z(i-I,j-1) (25a)

where i = 1,2, ... , min (N/2,M+l) and j = i,i+l, ... , M+1; or

Z(i,j) = Z(i-l,J-l) (25b)

for i = 2,3, ... , min(N/2,M+l) and J = M+2,M+3, ... , provided N > 2(M+2), also

for i = M+2,M+3, ... , N/2 and j = i, i+l, ... , i+M; or

Z(i,j) = 0 (25c)

for i = 1,2, ... , N/2 and j = i+1+M, i+2+M, ... , N; or

Z(ji) = Z (ij) (25d)

for i = 1,2, ... , N/2-1 and j = i+l,i+2, ... , N/2. The elements of the
lowerhalf of R- 1 could be obtained from the fact that R- 1 is Hermitian and
persymmetric. In reality, the upper-half of R- 1 is sufficient for the clutter
application described in Section III.

III. CLUTTER SUPPRESSION

Clutter is a general term describing radar returns from objects other
than targets of interest e.g., ground, rain clouds, or bird reflections. It
does not include energy received from deliberate attempts to interfere with
radar performance such as chaff or active jamming. Zehner and Currie in a
recent study [26] suggest that the best PSD models are Butterworth

Pb(F) =A (26)
1+Fn

and Gaussian

Pg(F) _ 1 exp(-F 2/2)

%42 (27)
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Inspection of Eqns. (22) and (23) show that a penalty is paid for selecting

.. m > M, since Em decreases slower than the compensating factor or term
increases. Ulrych and Bishop [16] have studied the Akaike FPE criterion for
both YWE and ABA. Histograms of the minimum FPE location for 100 realizations
of AR(2), (N=20) and AR(4), (N-40) data sets indicated peaks when m=M and m=N.
When the order was constrained (m < N/3) a single peak near m-M occurred.
Their studies, supported later by Jones [171, indicated that with m < N/2 the
first minimum in Eqn. (22) should be used to determine the LPF order for an
AR(M) process. If the data comes from noisy sinusoids a clear minimum for the
FPE does not exist, and the first local minimum could easily produce a poor
spectral estimate. Landers and Lacoss [181 studies all three order-predictors
which showed that the CAT technique produced a sharp minimum for noise-free
sinusoids when compared to the Akaike methods. However, there was little
distinction among the three for the same sinusoid plus 50% uniform noise. It
did appear that a single minima occurred in predictor-algorithm vs. order-
selected plots when processing a complex sinusoid as contrasted with either
the real or imaginary components. Unfortunately, it is often the size and
location of narrowband spectral components which are of interest, whereas, the
order-predictor algorithms are based upon the entire spectrum including any
noise present.

H. Compensating Observation Nose

When observation noise is added to samples of an AR process, the
result is really an ARMA process and spectral estimates derived from LSSE and

MESE are inaccurate, becoming worse as the Signal-to-Noise Ratio (SNR)
decreases. Unfortunately, ARMA modeling techniques are not well developed,
particularly for short data records [2, p. 1397]. A second approach is to use
the AR modeling but let.m = N/3. Kay [19] has shown that it is possible to
detect a noisy sinusoid (SNR = OdB) with m-32 (N=100). In a subseqent paper

[201 Kay investigated a second approach, namely compensating the R-matrix
directly by subtracting aanI, where a is a decimal fraction of the observation
noise power (an) and I is the identity matrix i.e., ones only on the principal

diagonal. Unfortunately, one does not know how much noise to remove. Tranter

[9] has studied this technique for the cases of one or two real-valued noisy
sinusoids. The Pisarenko Harmonic Decomposition (PHD) technique is a special

case which will be examined subsequently in Section IV. It does not assume
that the sinusoids are harmonically related and is a special ARMA process
which has equal AR and moving-average parameters.

I. Computing R-1 from LPF Coefficients

Although the PSD of the AR(M) process can be determined directly from
the LPF coefficient set {aM(k)}, i.e., without ever generating the actual
correlation matrix R; there are practical reasons for needing R- inverse

.O (R-1). Burg addressed this point in his 1968 paper [12] and Andersen [7] gave
a general solution in terms of the PEF sets and prediction errors (Pm) for
orders m = 0 -* M. Burg showed in his dissertation 121] that the inverse
correlation matrix could be expressed as

R- = ADA (24)

8
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Direct solution of Eqn. (20) by matrix inversion has been documented by
Barrodale and Erickson [14] and will be referred to as the Birrodale-Erickson
Algorithm (BEA). Unfortunately, such inversion requires 0(m ) operations, and
Marple [61 has proposed an alternative algorithm which exploits the structure
[rm(i,j)] and requires 0(m ) operations. This algorithm will hereafter be
referred to as Marple's Least-Squares Algorithm (MLSA). The BEA and MLSA

techniques eliminate SLS and significantly reduce the bias and variance of the
resulting spectral estimates. Additional observations regarding these two
least-squares algorithms are included in Section IV.

F. AR Parameter Estimation for Long Data Records

The Maximum Likelihood Estimator (MLE) is essentially quivalent for
N >> m to solving the YWE using Eqn. (13) to find estimates of R(k).

Unfortunately, finding the exact MLE solution of the AR(m) parameter set is
difficult. Consequently, three sequential estimation schemes for updating
(am(k)} of a slowly varying AR(m) process are documented by Kay & Marple [2,

pp. 1393-5). They include a recursive least squares method which resembles
Kalman filtering, an adaptive LPF which uses a gradient technique with
corresponding slow covergence, and a lattice filter which provides updates
only for the reflection coefficients coupled with the LDE to update the p
remaining m-2 coefficients. The applications contemplated in this study are
restricted to short records.

G. AR Model Order Selection

The technique employed in either LSSE or MESE has been to increase
the LPF order (i) until the resulting error energy (Em ) reaches some accep-
table level. Unfortunately, it follows from Eqn. (11) that Em+ 1 < Em and it
has been shown for an AR(M) process that the estimated spectrum is highly

smoothed when m << M and spurious detail results when m >> M. Akaike has pro-
posed two prediction estimators which have received considerable atten-
tion, the Final Prediction Error (FPE) and the Akaike Information Criterion
(AIC) which for a mth - order LPF are given by

FPEm = N+m+1 E

N-m-1

and (22)

AICm =n(Em) +2(m+1)/N

A third estimator due to Parzen [151 called the Criterion Autoregressive

Transfer (CAT) is given by

m A- 1 A-i
CATm Z _ Ei ]-E m """.

N i=1

where (23)

Ei = Ni Ei
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errors (presumed to be known). The reflection coefficients so derived are
given by

N-1 *
E bm (i-1) fm(i)

Km+i = -2 i=m+i (17)

[ N-1-i I bm(i-l) 1 2+ If2(i) 2

i-m+1

where Andersen [71 provided a flowchart for the Burg algorithm, and in a later
paper [131 provided a recursive relation for the denominator (Dm+1 ) of Eqn.
(17),

D- .- Dm*( 1 K-- 12) - Ib(Nl-m-) 12 _ f(+) 12 (18)

The computer program based on the original Andersen flowchart [7] was used by
Tranter [8] and will hereafter be referred to as Andersen's Burg Algorithm
(ABA). The ABA technique has several problems including spectral line

*splitting (SLS) and significant bias and variance in the PSD estimate.

E. Least-Squares Spectral Estimation (LSSE)

The LSSE technique removes the LDE constraint and partially differen-
tiates Eqn. (16) with respect to all the {am(k)}, setting the results equal to
zero, which yields

m

_-___ 2 F am(j) rm(i,j) . 0
iam() J-0

where (19)
,+, N-in- 1

rm(i,j) E x(k+m-j) x* (k+m-i)
k-0

[ + x(k+i) x* (k+j).

In matrix form Eqn. (19) becomes

[rm~~j)]m~l~+,)am~i](m+,1)(20)

[Em 0 ... O]P(1,m+l )

where the minimum prediction error energy is

m
Em E . am(J) rm(0,j). (21)

J=0
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D. Forward-Backward Linear Prediction (FBLP)

The FBLP technique was proposed by Burg [12] with forward and back-
ward PEF errors given by

m
fm(n) = x(n) + F a(i)x(n-i) .1

i1 (14)

m
bm(n) = x(n-m) + E a*(i)x(n-m+i)

i-i

where fm(n) = x(n) - x(n), x(n) given by Eqn. (2) with all {b(i)} = 0.
Likewise bm(n), no relation to b(i), represents a backward prediction error -

estimate of x(n-m) based on "future" samples. Note that the summation limits P
in Eqn. (14) are restricted such that no samples of x(n) outside the range n=O
to N are involved, i.e., no assumptions are made regarding the time series
outside the N-sample interval; in contrast to Eqn. (13) where R(k) is esti-
mated based on the tacit assumption that x(n) = 0 for n < 0 or n > N. The
forward-backward errors can be expressed by the recursion relations

fm(n) = fm_(n) + Kmbmil(n-l)

* (15)
bm(n) = bm.(n-1) + KYjfm.(n) .

subject to the initial conditions fo(n) - bo(n) = x(n). Implemented in a
flowgraph form with error outputs from the previous section as inputs forms a
so-called lattice PEF, two sections of which are shown in Figure I where (9)
implies a summing node. To obtain estimates for {aM(k)} Burg minimized the
total error energy p

N-I

EM E [ 'fm(ti) I2+ lbm(n) 121 (16)
n=m

subject to the LDE constraint for a(i), thus insuring a stable AR filter.

Setting the derivative of Em, m = 1,2, ... , M, with respect to Km equal to
zero permits solving for {Km} as functions of the prior-order prediction

fl(n )  f-

x(n) K1  K2

Ibp.b 2(n)

blln) bl(n-1)

Figure 1. Lattice PEF.
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Af = 1 cos(2t + RN) sin (AN) . (43)
2 icNT

It is apparent that the error is a decreasing function of the number of
samples used; however, when normalized with respect to the nominal DFT resolu-
tion cell width (1/NT), the maximum error is roughly 16% of this cell width

*and occurs for four values of tb. Swingler [46] showed that the frequency error
could be reduced by inserting into the reflection coefficient expression, Eqn.
(17), a Hamming weight term in both numerator and denominator summations.
Moreover, independently of both Nuttall [47] and Barrodale & Erickson [14] he
also proposed the least squares approach which is implemented by Marple's
algorithm. A good review of noisy sinusoid spectral estimation sensitivity of
the ABA to such factors as sample size, order number, phase, and SNR is
detailed by Chen & Stegen [48]. It has been shown by Marple [6] that the MLSA
virtually eliminates both frequency bias as a function of $ and SLS associated

with large SNR. However, little additional has been published regarding
sample size effects. The selection of order is handled routinely in MSLA by
specifying MM, after which the Marple algorithm increases M until either one
of the tolerance tests on error energy ratios is met or M=MM. The Akaike FPE
first minimum test is incorporated into the BEA [14] and Tranter [8] evidently

used it in deciding the order for ABA too.

Landers & Lacoss [17] noted that the various prediction error
algorithms were somewhat sensitive to real vs. complex data in the presence of
uniform white noise. The results for a noisy sinusoid using the ABA and MLSA
are summarized for one particular test in Table 1. The value of M selected by
the MLSA and corresponding frequency estimate (F = fcT = 0.05) for 32 samples
of a noisy sinusoid with MM = 8 are tabulated for both real and complex data.
The test was repeated for the ABA using only complex data (since Af would be a
maximum at b = 500), initially with M=8 and then M=3 which was the order pre-
dicted by the first-minimum of both the FPE and CAT criteria. (The AIC had
not reached a first minimum by M=8.) To illustrate the effect of changing N,
the 10 dB SNR case was run for complex data with N reduced from 32 to 16. The

spectral estimates (M=8) for the ABA and MLSA were 0.0500 and 0.0506, respec-
tively. Doubling N from 32 to 64 yielded 0.0488 and 0.0497, respectively.
These results would tend to show that a noisy sinusoid can be reasonably esti-
mated for SNR > 0 dB even with a small number of samples. Comparative results
from ABA and MLSA for real-valued noisy sinusoid (fcT = 0.0725, a = 50, s =
500) are shown in Figures A-3 and A-4. The ABA frequency bias for this par-
ticular $ is NTAf = 0.125 (12.5%). It is evident from Table I that the in-
tial phase is not a problem with complex-valued samples.

4

19



Table 1. KLSA and ABA Performance Comparison.

Noisy Sinusoid (fcT 0.05, h - 50, N = 32)

MLSA (MM = 8) ABA
Real Complex Complex

SNR M F M F F(M=8) F(M=3)

0. 8 0.0494 8 0.0455 0.0476 0.0440

10. 8 0.0494 8 0.0485 0.0497 0.0494

20. 8 0.4097 8 0.0497 0.0500 0.0500

30. 6 0.0500 4 0.0500 0.0500 0.0500

40. 2 0.0500 2 0.0500 0.0500 0.0500

C. Closely-Spaced-Sinusoids Estimation

The ability to resolve two closely-spaced noisy sinusoids has

6 received considerable attention in the literature. Marple [49] empirically
determined that the ability to resolve two sinusoids at frequencies f, and
f2 depended on the PEF order (M) and SNR (a, not in dB), i.e.,

1.023
AF A If2 -fl T f M[a(M+1)]0 .31 (44)

This formula was obtained assuming M correlation lags and is reproduced in

Table 2 for M ranging from 1 to 30 and SNR ranging from 0 to 50 dB. If the

number of samples N >> M, Eqn. (44) serves as an upper bound on resolution,
i.e, increasing M by two or three should yield equivalen resolution for a
given SNR. Marple also observed that a signal of the form

x(k) - A1 cos(Olk + 41) + A2 cos(e 2k + b2) (45)

was most difficult to resolve when $1 - 62. The frequency resolution when
compared to the conventional DFT periodogram was roughly four times as good as

20 dB, twice at 0 dB, and equivalent at -10 dB.

Barrodale & Erickson [141 compared their BEA with the conventional

ABA and showed that it outperformed the ABA for a variety of M choices and a
small number of samples. Specifically, for N-75 and fl - 0.003, f2 - 0.02

* (which corresponds to 0.23 and 1.5 cycles, respectively) the BEA program was

able to identify both fl and f2 correctly for M=16 and f2 for M < 5, whereas
6 the ABA generated false spectral estimates for all examples. However, they

observed comparable performance if at least 15 cycles of sinusoid samples were
available. Ulrych & Clayton [501 showed that their least-squares algorithm,
the basis for both BEA and MLSA, had considerably less frequency bias than the

ABA. They also recommended that M be selected in the range N/3 < M < N/2
rather than relying on the FPE or AIC first-minimum concept. This recommen-

2

20

[0"



AX4 t

Table 2. Frequency Resolution Estimates Using Equation 44.

SH (Do)

M . 6 20. 30. 40. 5o.

6 .3265 S. 406811 S.19921 0.09761 0.047" 6.68341

0-636431 0.17941 0. 0270? 0.04304 0.010 0.01032

2 O.8332 0.10940 6.SS368 @6214 0.0121S 0.060

4 0.1583 0.076S? 0.93M5 0.01137 0.00200 1.60441

.. S 0.11310 S-O5789 0.02835 6.0129 .. 6006 6. 00333

6 ."016 4.64S92 $.Sam6 0.01103 0.66540 #.*$ass

7 0.07783 0.63712 6.61352 0.00667 S."0444 0.0021

3 .66515 #.03191 0.015,63 G.6766 COOPS7 0.0134

9 00.06 0.02745 1.4t344 0 -S 00S4.00323 6.66153
L

L6 is.04W97 0.02399 0.01175 0.6657 0.6021 6.661

11 0.0433 0.02123 6.61640 0.0SOS" 0.00249 6.00122

lit 063M 6.6193 0.001930 0.604SS 0.00223 0.66109

12 0.03436 0.01712 0.9139 S. "411 6.0121 0.600

14 0.03177 6.01554 0.6 0762 S.600373 6.00183 460090

15 0.02907 0.01424 0006t97 S.660342 0.00167 6-001682

is 6.61674 6.01310 0.00642 600314 0.6614 6.66675

17 0.42473 6.01211 0-60693 0.100291 0.00142 0. 00976

@1 .*am9 4.0112S 400551 0C6WS7 S.6132 6Cows6

to 4.0214a 6.01049 0.6014 6.06m5 404123 6.6605

IS 6.60004 0.60981 S.010481 0.0135 0.0611 6.O666

81 0.01381 1.6091 S1 010461 @.Owl2 0.010198 6.6603

36041711 0.0067 1.01042S 0.0018 4.00102 6.6605

33 01M7 1008319 6.600401 4.00196 0.00"on 6.0047
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dation is also supported by Kay & Marple [2, p. 1397] who illustrated that

increasing M from four to 32 resolved two sinusoids at 0.143 and 0.200 at a

SNR = 0 dB. An example [16] of spectral estimation for two equal amplitude,

complex-valued sinusoids (fl = 0.11, f2 = 0.14, N=40, a=50) using the ABA

4 program with M=15 is given in Figure 5. Spectral estimates for the two peaks

differ slightly, e.g., ABA: (0.1120, 0.1388) and MLSA: (0.1105, 0.1395).

The PEF-order estimators for the ABA program are shown in Table 3. Local

minima for the FPE and CAT estimators track each other rather consistently,

whereas the AIC estimate does not provide a local minimum through Mf15, which

is consistent with the MLSA setting M = MM - 15.

Table 3. PEF Order Estimators Using ABA Program MI5).

Two Noisy Sinusoids (flT 0.11, f2T = 0.14, SNR f 17 dB)

PCER - P. S i A-AIKE - PPE(J) - AISE - -. 1.
'

.
'
i-

J. I *.9640SE-e1 2.1868 :eXE- .a# -. 371941E-. . .

j. 5 0.6463443E-al *.73108 £--l -e.0.8,J4E4' "e.'01

J. 6 *.577O326E-01 7.82is8t4E-01 -0.94 9 -8.4:

J- 7 *.03S63-91 0.762944E-ei -. - -. 1il -
8. 4 8 *.:,; .764116?,E-al I 7.~1 'C

J9 9 f. 481 d3E-oI a .e(2s69St-013 -e3T an
J. :n 0. 41')E-01 0.776346fE-01 310.0

. . 2 *-3724384E-01 0:*731082EE-01 -0. 4168,!;E-.1

J. 3 .353gaoE-01 *.735064SE-a1 -0. '.Jbl,,SE *9 .639ZE0
J3. 14 0.3332665E-01 C7?3b66E-ai -0.*Q 6.559E** 61Z.EJ

Tranter [81 developed a real-valued (N=100) test case for Eqn. (45)
in which the chosen frequencies (fl - 0.098, f2 - 0.102) were spaced less than
one-half a DFT cell apart. Both he and Shumway [10] used the BEA program in

conjunction with the FPE first-minimum criterion to study the effects of SNR
on the spectral estimation and concluded that proper resolution required at

least 40 dB SNR. This value turns out to be too large because of their

reliance on the FPE first-minimum criterion to select M.

The results obtained by repeating this test case using MLSA on real

data for a variety of SNR-M combinations are summarized in Table 4 and some

responses are shown in Figure 6. It is apparent that the test frequencies can

be resolved with less than 1% error for a SNR of 20 dB provided M is large

enough. In contrast, an M of 7 can be used when the SNR = 50 dB. The third

column of Table 4 labeled S(0.1) indicates the response in dB at the mid-point
(F=0.1) relative to the smaller sinusoid, with 0 dB indicating failure to

resolve the two components. The final column (Me) indicates the value of M

predicted from Table 2 which should yield a response similar to the 33/20 dB

curve in Figure 6 for that particular SNR. As stated earlier Me is based upon

autocorrelation estimates rather than data samples; however, the difference

between It and the M which yields S(0.1) = 3 dB is evidently a function of

SNR, ranging from approximately nine at 20 dB to three at 50 dB.
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Figure 5. Double sinusoid spectral estimate using ABA.
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Table 4. Summary of Tranter's Test Case Using MLSA.

M SNR (dB) S(0.1) dB Me

33 20 2.5 24

33 30 24.0 14

16 30 0. 14

16 40 10.5 8

10 50 18.5 5

7 50 2.0 5

5 50 0. 5

D. Target Identification

Target identification is a potential radar application for the abi-
lity of MSA techniques to resolve closely-spaced sinusoids. Unfortunately,
little has been found in the open literature regarding this feature and time
did not permit a search of the classified literature. Taylor et. al. [51]
described one situation in which the DFT and MEM techniques were both applied
to two sweep-scan radar-return data sets (N-64) from a single-engine jet
aircraft. Basically, the MEM spectrum was able to identify spectral lines in
both data sets for the target doppler and upper modulation sideband (caused by
engine turbine rotation), whereas the DFT spectrum was poorer and failed to
identify the modulation sideband for one data set. A classified report by

Gardner [521 indicates that more complicated spectral returns would be needed
to distinquish various types of aircraft. Only Swingler [45] seems to have
addressed the resolution of more than two sinusoids, providing some infor-
mation regarding the resolvability of ten harmonically related sinusoids with
relative amplitudes in the range 0.1 to 1.0 with 5% added white noise. Time
did not permit simulation of this situation nor the review of some specialized
techniques to resolve sinusoids in the presence of noise. These methods,
reviewed by Kay & Marple [2, pp. 1402-7] include Pisarenko Harmonic

Decomposition, Prony Spectral Line Decomposition and Prony's Method (Extended)
with appropriate references cited. In each case the number of sinusoids must
be estimated to establish a model order. Other recent papers on this topic
have been written by Tufts & Kumaresan [53, 54] Kay [55], Marple [56, 57], and
Shumway [10].
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V. RESULTS AND RECOMMENDATIONS

The basic theory of MSA was traced from the Yule-Walker equations, which
assumed the autocorrelation function was either known or could be approxi-
mated, thru the forward-backward'energy minimization of Burg, to the
algorithms of Andersen, Barrodale & Ericksen, and Marple which are used in

MSA. The various model-order selection schemes were used with both AR and
noisy-sinusoid signals. Sawyer's method was recorded for determining the
inverse of the correlation matrix using iterative equations which are func-

tions of the Mth order LPF coefficients.

Clutter modeling and subsequent suppression by inverse filtering seems to
be a definite application of MSA. It was shown that clutter is basically
modeled spectrally as an AR process and the McMaster University team (Haykin,

et. al.) demonstrated that both simulated and real clutter PSD could be

t modeled adequately by MSA, particularly when the samples were complex valued.
Using theory developed in the late 1960s, Sawyers demonstrated the feasibility
of designing a DFB, which would optimally improve the SIR, by multiplying the
inverse-R matrix by a steering vector. This matrix could be obtained by tra-
diitonal means, if the clutter correlation function was specified, or by the

use of MSA as discussed earlier when only clutter-dominated sample returns
were available. Adaptive filtering based on this technique has been studied
also by Nitzberg in support of a U. S. Air Force RADC project. Gibson &
Haykin have studied properties of adaptive lattice PEF required to suppress

"- clutter. Such filters require computation only of reflection coefficients
obtained from Burg's forward and backward errors. Decoupling appears to be a
problem since all coefficients initially adapt to the strongest spectral com-

ponent and once K, is fixed, the remaining values readjust to the next
strongest component, etc. Their research indicated roughly three stages for
every broad peak in the PSD and one for each sharp peak.

Resolution of two sinusoids was studied for a variety of SNR values. It
was shown that the conventional model-order predictors of Akaike and Parzen
tended to produce a first-minimum at too low an order. Marple's technique
seems to be more appropriate; however, the tolerance choices must be selected
with some care. Marple's empirical formula for frequency resolution capa-
bility as a function of model order and SNR, as reproduced in Table 2, seems
to provide a reasonable starting point for selecting M for a particular SNR.
Studies performed in Section IV tend to indicate that true AR(M) processes can
be spectrally estimated quite well with m = M and noisy sinusoid pairs can be
resolved with large m, typically approaching N/3 for low SNR.

It is recommended that clutter suppression algorithm be designed with

Ouiet Radar parameter sets and tested with complex data obtained from the
radar. It is also suggested that the MLSA be applied to the problem of
multiple sinusoid estimation-where the amplitude-frequency assignment is cho-

- sen to emulate the spectrum associated with a particular type or class of
targets. Finally, contacts should be initiated with researchers at McMaster
University, RADC, and in other organizations where work is underway on the
clutter suppression problem.

26



J7

REFERENCES

1. R. Houts,"Applications of spectral estimation techniques to radar

data, "Battelle Report (D.O. 1876) to U. S. Army Missile R & D Cmd.,
Sept. 1981.

2. S. Kay and S. Marple Jr., "Spectrum analysis " a modern perspective,"
Proc. IEEE, vol. 69, Nov. 1981, pp. 1380-1419.

3. L. Brennan and L. Reed, "Theory of adaptive radar," IEEE Trans. AES,
vol. AES-9, Mar. 1973, pp. 237-52.

4. A. Rihaczek, "The maximum entropy of radar resolution," IEEE T. AES,
vol. AES-17, Jan. 1981, p. 144.

5. P. Jackson, Radar superresolution? Perhaps!" IEEE T. AES, vol. AES-17,
Sep. 1981, pp. 734-5.

6. "A new autoregressive spectrum analysis algorithm,"
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-28,

pp. 441-454, Aug. 1980.

7. N. 0. Andersen, "On the calculation of filter coefficients for
maximum entropy spectral analysis," Geophys., vol. 39, pp.
69-72, Feb. 1974.

8. W. Tranter, "A comparison of autoregressive spectral analysis techni-

ques," Battelle Report ',.0. 1044) to U.S.Army Missile R & D Cmd.,
Oct. 1979.

9. , "Noise compensation applied to a maximum entropy spectral analysis
routine," Battelle Report (D.O. 1803) to U. S. Army Missile R & D Cmd.,
Jan. 1982.

10. R. Shumway, "On maximum entropy and periodic regression as methods for
resolving contaguous-frequency power spectra, "Battelle Report (D.O. 1894)

to U.S. Armyk Missile R & D Cmd., De. 1981.

11. J. P. Burg, "Maximum entropy spectral analysis." in Proc. 37th
Meeting Society of Exploration Geophysicists (Oklahoma Cicy,

OK), Oct. 31, 1967.

12. .(38] , "A new analysis technique for time series data," NATO
Advanced Study Institute on Signal Processing with Emphasis on
Underwater Acoustics, Enschede. The Netherlands, Aug.
12-23, 1968.

13. , "Comments on the performance of maximum entropy
algorithms," Proc. IEEE, vol. 66, pp. 1581-1582, Nov. 1978.

14. 1. Barrodale and R. E. Erickson, "Algorithms for lease-squares
linear prediction and maximum entropy spectral analysis-Part
I: Theory and Part II: FORTRAN Program," Geophys., vol. 45,
pp. 420-446, Mar. 1980.

27



15. , "Some recent advances in time series modeling," IEEE
Trans. Automat. Contr., vol. AC-19, pp. 723-730, Dec. 1974.

16. T. J. Ulrych and T. N. Bishop, "Maximum entropy spectral anal-
ysis and autoregressive decomposition." Rev. Geophysics Space

Phys., vol 13, pp. 183-200, Feb. 1975.

17. T. W. Anderson, "Estimation by maximum likelihood in auto-
regressive moving average models in the time and frequency

domains," Dep. Statistics, Tech. Rep. 20, Contract NR-042-034,
Stanford University, Stanford, CA, June 1975

18. T. E. Landers and R. T. Lacoss, "Some geophysical applications

of autoregressive spectral estimates." IEEE Trans. Geosci. Elec-
tron., vol. GE-15, pp. 26-32, Jan. 1977.

19. S. M. Kay, "The effects of noise on the autoregressive spectral

estimator," IEEE Trans. Acoust., Speech, Signal Process., vol.
ASSP-27, pp. 478-485, Oct. 1979.

20. __ , "Noise compensation for autoregressive spectral estimates,"

IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-28,

pp. 292-303, June 1980

21. __, "Maximum entropy spectral analysis," Ph. D. dissertation,

Dep. Geophysics, Stanford Univ., Stanford, CA, May 1975

22. R.Herring, "Maximum entropy spectral analysis and radar signal pro-

cessing," Technical Report TR-2 of Technical Panel KTP-3 (Radar Signal

Processing), Nov. 1979.

23. R. Nitzberg, "Some design details of the application of modern spectral
estimation techniques to adaptive processing, "Proc. First ASSP Work-
shop on Spectral Estimation, Aug. 1981, paper 7.1.

24. M. Siddiqui, "On the inversion of the sample covariance matrix in a
stationary autoregressive process, "Annals of Math. Statistics, vol.
29, 1958, pp. 585-8.

25. J. Sawyers, "Adaptive pulse-doppler radar signal processing using the
maximum entropy method," IEEE 1980 EASCON Record, pp. 454-61.

26. S. Zahner and N. Currie, "Radar clutter modeling for the quiet radar,"
Battelle Report (D.O. 1544) to U.S. Army Missile R & D Cmd., Dec.
1980, pp. 12 and 38.

27. M. Abramowitz and I Stegun (Eds.), Handbook of Mathematical Functions,
Nat. Bureau of Stds., Washington D.C., p. 932.

28. "Modeling of clutter for coherent pulsed radar," IEEE T. Info.
Theory Nov. 1975, pp. 703-7.

29. S. B. Kesler and S. S. Haykin, "The maximum entropy method

applied to the spectral analysis of radar clutter," IEEE Trans.
Inform. Theory, vol. IT-24, pp. 269-272, Mar. 1978.

28



30. S. Kesler and S. Haykin, "A comparison of the maximum entopy and the
periodogram method applied to the spectral analysis of computer-

simulated radar clutter," Canadian Electrical Eng. Jour., Vol. 3,
Jan. 1978, pp. 11-16.

31. , "Maximum entropy estimation of radar clutter spectra," in
Natl. Telecommunications Conf. Rec. (Birmingham, AL), pp.
18.5.1-18.5.5,Dec.3-6,1978.

32. S. Haykin, S. Kesler, and B. Currie, "An experimental classification
of radar clutter, "Proc. IEEE, vol. 67, Feb. 1979, pp. 332-3.

33. C. Hawkes and S. Haykin, "Adaptive digital filtering for coherent MTI
radar," Record IEEE 1975 Int. Radar Conf., pp. 57-62.

34. W. Rummier, "Clutter suppression by complex weighting of coherent
pulse trains," IEEE Trans. AES, vol. AES-2, Nov. 1966, pp. 689-99.

35. L. Spafford, "Optimum radar signal Iprocessing in clutter," IEEE Trans.
IT, vol.IT-14, Sept. 1968, pp. 734-43.

36. J. Hunter, R. Hyneman, and J. Sawyers, "Design and implementation of
Hughes AN/TPQ-37 artillery locating radar signal processor," Tri-

Services Radar symposium, Jul. 1976, pp. 222-4.

37. D. E. Bowyer, P. K. Rajasekaran, and W. W. Gebhart. "Adaptive
clutter filtering using autoregressive spectral estimation." IEEE

Trans. Aerospace Elec. Syst., vol. AES-15. pp. 538-546. July
jq79

38. J. H. Sawyers, "Applying the maximum entropy method to

adaptive digital filtering," in Rec. 12th Asilomar Conf. Circuits,
Systems and Computers, pp. 198-202.

39. J. Gibson, S. Haykin, and S. B. Kesler, "Maximum entropy

(adaptive digital filtering applied to radar clutter." in Rec. 1979
IEEE Int. Conf. Acoustics, Speech, and Signal Processing, pp.
166-169.

40. , "Stable and efficient lattice methods for linear prediction."

IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-25,
pp. 423-428, Oct. 1977.

41. C. Gibson and S. Haykin, "A comparison of algorithms for the calcu-
lation of adaptive lattice filters, "Proc. 1980 IEEE Int. Conf. ASSP,

pp. 978-83.

42. L. Griffith, "A continuously-adaptive filter implemented as a lattice

structure," Proc. 1977 IEEE Conf. ASSP, pp. 683-6.

43. , "Learning charactristics of adaptive lattice filtering algo-
rithms,"IEEE Trans. ASSP, vol. ASSP-28, Dec. 1980, pp. 681-91.

29



44. ---- , "Performance studies of adaptive lattice prediction-error filters

for target detection in a radar environment using real data, "Proc.

1981 IEEE Conf. ASSP, pp. 1054-7.

45. D. N. Swingler, "A comparison between Burg's maximum entropy method

and a nonrecursive technique for the spectral analysis of deterministic

signals," J. Geophysical Res., vol. 84, pp. 679-685, Feb. 10, 1979.

46. , "A modified Burg algorithm for maximum entropy spectral analysis,"

Proc. IEEE, vol. 67, pp. 1368-1369, Sept. 1979.

47. , "Spectral analysis of a univariate process with bad data points,
via maximum entropy, and linear predictive techniques." Naval Under-

water Systems Center, Tech. Rep. 5303, New London, CT. Mar. 26, 1976.

48. W. Y. Chen and G. R. Stegen, "Experiments with maximum entropy power

spectra of sinusoids," J. Geophysical Res., vol. 79, pp. 3019-3022,
July 10, 1974.

49. , "Frequency resolution of high-resolution spectrum analysis
techniques," in Proc. 1978 RADC Spectrum Estimation Workshop, pp.

19-35.

50. T. J. Ulrych and R. W. Clayton, "Times series modelling and maximum
entropy," Phys. Earth Planetary Interiors, vol. 12, pp. 188-200,

Aug. 1976.

51. R. Taylor, T. Durrani, and C. Goutis, "Block processing in pulse
doppler radar," lEE Int. Conf. Radar-77, Oct. 1977, pp. 373-8.

52. R. Gardner, "Aircraft radar target signatures (U), "Naval Research
Laboratory Report 7156 (Secret), Sept. 15, 1970.

53. R. Kumaresan and D. W. Tufts, "Improved spectral resolution III:

Efficient realization," Proc. IEEE, vol. 68, pp. 1354-1355, Oct.

1980.

54. D. W. Tufts and R. Kumaresan, "Improved spectral resolution,"

Proc. IEEE, vol. 68, pp. 419-420, Mar. 1980.

55. S. Kay, "More accurate autoregressive parameter and spectral estimates
for short data records, "Proc. First ASSP Workshop on Spectral Estima-

tion, Aug. 1981, paper 2.1.

56. S. Marple Jr., "Spectral Line Analysis - Batch and Sequential Adaptive

Approaches, "IEEE First ASSP Workshop on Spectral Estimation, Aug.

1981, paper 4.4.

57. , "Exponential Energy Spectral Density Estimation, "Proc. 1980

IEEE Conf. ASSP, pp. 588-91.

30



58. S. Haykin and S. Kesler, "The complex form of the maximum
entropy method for spectral estimation." Proc. IEEE, vol. 64,

pp. 822-823, May 1976.

59. A. K. Datta. Comments on "The complex form of the maxi-
mum entropy method for spectral estimation." Proc. IEEE,
vol. 65, pp. 1219-1220, Aug. 1977.

60. S. B. Bowling, "Linear prediction and maximum entropy spec-
tral analysis for radar applications." M.I.T. Lincoln Lab., Project
Rep. RMP-122 (ESD-TR-77-113), May 24, 1977.

31



ACRONYM LIST

ABA Andersen's Burg Algorithm

AIC Akaike Information Criterion

AR Autoregressive

AR(m) AR process of mth-order

ARMA Autoregressive Moving Average

BEA Barrodale-Erickson Algorithm

CNR Clutter-to-Noise Ratio

DFB Doppler Filter Bank

DFT Discrete Fourier Transform

FBLP Forward-Backward Linear Prediction

FPE Final Prediction Error

LDE Levinson-Durbin Equation

LPF Linear Prediction Filter

LSSE Least-Squares Spectral Estimation

MEM Maximum Entropy Method

MESE Maximum Entropy Spectral Estimation

MLE Maximuim Likelihood Estimator

MLSA Marple's Least-Squares Algorithm

MSA Modern Spectral Analysis

MTI Moving Target Indicator

PDF Probability Density Function

PEF Prediction Error Filter

PHD Pisarenko Harmonic Decomposition

PD Power Spectral Density

SCR Signal-to-Clutter Ratio
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ACRONYM LIST (Cont'd)

SIR Signa1-to-Intirference Ratio

SLS Spectral Line Splitting-

SNR Signal-to-Noise Ratio

YWE Yule-Walker Equations
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APPENDIX

MSA PROGRAM

The computer progam listed in Figure A-i of this appendix is basically an
extension to complex data of Tranter's progam [8]. The complex-data extension
is based on the algorithm of Haykin & Kesler [58], Datta [59) and Bowling

[60]. The BEA [14] used by Tranter for LSSE was replaced by Marple's
algorithm [6] because it is computationally more efficient and has its own
prediction-order estimator, which was shown in Section IV to be better than

the conventional estimators of Akaike and Parzen used herein in conjunction
with the ABA option. Marple estimates that his LSSE algorithm requires only

20% more computation time than the ABA program, whereas Tranter estimated that
the BEA program took three times as long. An X-Y plot routine written by Tom

Cash for the PDP 11/34 computer was also included in the MSA program.

The main program is designed to read user con rol parameters (see Table
A-I), generate the real (imaginary) noise power a consistent with the user
supplied SNR and Eqn. (42), call the appropriate subroutines (S.R.), remove
any bias (mean value) from the generated samples, write appropriate output

information information, and generate PSD (dB) vs. frequency (Hz) data points
l for S.R. PLT. The various subroutines and their purposes are itemized in

Table A-i in the order in which they are listed in Figure A-i.

Some examples of the printouts and PSD plots achieved with the ABA and
MLSA follow. The common header describing the test case data is deleted from

the b-part of Figures A-2 and A-3 to insure a one-page fit.

Table A-i. Input Parameters for Program MSA.

* Card Symbols Function

I ISIG Test flag indicating presence (=1) or absence

(=0) of sinusoids, Eqn. (45).

ICLT Ibid. for AR(MC), Eqn. (2).

ICPX Data samples are real (=0) or complex (=1).

IALG Estimation technique is ABA (=0) or MSLA (=).

2 SNRDB SNR (dB) (ISIG=I).

CNRDB CNR (dB) (iCLT=1).

3 Al, FL, PHIl Amplitude, frequency, and initial phase of
first sinusoid in Eqn. (45). (ISIG=1).

4 A2, F2, PHI2 Ibid. for second sinusoid.

5 N Number of samples in test waveform.
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4( 9). -o.12149glcofo 0.f0*fM..01o 0.2276E*O1
4(14). *.I764777E.00 9.00000oo@ 0.22501.01
4111. -0.3265391-01 41.Ooooooc* 0.2179E4O1
4(12). -I.1S933401 0.wowooc40 0.20M#01
M(130. -0.24397931E00 f.~o0w~os 0 .1393E1.o1
4(141- -0.1402914E.00 0.00000001.0 0. 143E401
ACIS). -0.338102K1-01 0.408#08 0. 18321#01

PEAK SPECTRAL FREG.-* 7.250 NZ

a) MLSA

PREl. EhROR COEFF. - AtJ) POWECR - PfJP tAKC - FPEtJ) AK11(6 - BIC(J; PAIZEs C AT

. I -1.4259[of0 41.0000004C#90 0.116132E.00 I.12136521.00 -1.1361758E*63 -0.8334913E001
J- a -0. 1231711. 0. 000000#00 0.33019131-ol 0.463S7441 -0.3002097[o@3 -0.6543638E-02
.2. 3 *.32S605SE-01 0.800 E#100 0.2189719E-01 0.270314-01 -9.355961lE#o3 -0.4353422E#42
J. 4 0.80OM565-01 0.00000001'0 0.17324391-01 6.19129011-01 -1.379197103 -o.54b0993E.02
.1. 1 0.24119S51.00 0.08044E#640 0.143207GE-01 6.161297S01-0t -4.39815061.03 -0.6472853E.02
.2o 6 0.120318410 0-00000M06 0.1337167E-Ol 0.25363!1K-01 -6.4657763E#03 -0.6762SgE*42
.2. 7 S.11243741.0 40.06000006.0 0.13012011-01 I.1615004f-f1 -0.40SS301C.03 -0.68,.3776E.02
.2. I -0.8266711-0l 0.0000001.0 0.130032X1-01 S.1SS4?341-Sl -0.4039S98X03 -0.667152E02
.2. 9 -0. 1028460#44 S. 0000040C1off *.12975131-6l *.1581611-01 -0.409816K+.03 -0.6S41871E.02
.2. t0 0.17"71001.0 0.00000M#490 0.12716561-01 0.1513r7E-61 -0.4104S36E#03 -0.6509137E.62
.3. Is -0.3314113141 0.00000001.0 O.MMA-051O 0.16036501-01 -0.41153561.03 -0.643609E-92
J* IS 1.244074C1>01 0.00000000 0.12S764S1-01 0.16a3446[(4I -6.41101701.03 -0.6322446E.42
J- 13 -0.15S41111.00 0.00000001.0 0. 1210013-01 0.1619442E-01 -4.41536851.3 -0.64418061.02

* .. 14 -0.514103SE-01, 0.80000644C040 O.1208534E-01 4.1636143E-01 -9.41599063 -0.6Q98004E.0a
.2. IS 0.3931342E-01 0.0000010 0.120661U-01 1.166096K-St -0.4161465E-03 -0.6157121E-02

P101 SPECTRAL FREQ.. 7.37S HZ

B) ABA

Figure A-3. Example printouts for noisy sinusoid.
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Table A-i. Input Parameters for Program MSA. (Cont'd).

Card Symbols Function

M Maximum order of AR Prediction used to ter-
minate ABA and possibly MLSA.

MC Order of AR test waveform.

K Number of points in PSD plot.

6 FN Sampling frequency (Hz).

FI, FF Initial and final frequencies in PSD

plot (Hz).

TOL 1 Ratio of final to initial estimation error
in MLSA which if reached will terminate
search. (Default - 0.001).

TOL 2 Ratio of present estimation error to previous
order error in MLSA which if reached will
terminate search. (Default = 0.005).

7 AR Array of MC coefficients for AR(MC) test

signal (ICLT - 1).

Table A-2. Subroutines for MSA Program.

S. R. Purpose

SIGI Generate sinusoidal samples, Eqn. (45).

GASS Generate Gaussian noise samples with zero mean

and standard deviation a.

NPWR Calculate sample mean-square-value for signal,
noise, and signal plus noise.

FPEI Calculate three prediction-error estimates

(IALG - 0), Eqns. (22) and (23).

MFREQR Compute PSD, Eqn. (5).

PLT Generate plot of PSD (dB) vs. Frequency (Hz)
and identify frequency location of spectal peak.

MEMC Complex-data version of ABA. (IALG = 0).

ARCLTR Generate AR(MC) samples, Eqn. (2).

MARPLE Marple's least-squares algorithm. (IALG - I).
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Example I = AR(4) Model (CNR = 50dB)

This example estimates the PSD for a given AR(4) process with coefficients
shown in "AR CLUTTER COEFF. -" line in Figure A-2(a). The Marple algorithm
(MLSA) terminated with M=4 (the proper choice) because E(4)/E() < 0.001 as
shown. The AR coefficient closely approximate the negatives of the defined
values because the minus sign of Eqn. (2) was inadvertently omitted from S.R.
ARCLTR. This could readily be corrected by the change

XC(J) = CMPLX (-X(K), . 4)

The ABA was permitted to run to M=8 to show the three predictor-order
results. Using first minimum choices, the proper order would be FPE=5, AIC >
8 (with a rather flat value for 5 < M < 7), and CAT=5. The PSD plot appears
in Figure A-4.

Example 2 - Noisy Sinusoid (SNR = 17 dB)

The second example is for a noisy sinusoid described by Eqn. (41). The
user supplies the SNR (17 dB) which is converted to a number from which
a (SIGMA) can be determined in accord with Eqn. (42). Note that the second
signal amplitude (A2) must be set equal to zero as shown in Figure A-3(a). In
this case the prediction order reaches the preset maximum (MMAX) of 15. The
ABA predictors shown in Figure A-3(b) indicate FPE=7, AIC > 15 (with flat
values in the ranges 7 < M < 9 and 13 < M < 15), and CATffi7. The spectral fre-
quency for ABA is 7.375 Hz vs. the correct MLSA estimate of 7.250 Hz. The ABA
spectral estimate shown in Figure A-4 also has considerably more sidelobe
energy over the region dc to 1/4T.

Generating data samples for a pair of sinusoids simply requires supplying
non-zero values for the three parameters of Card 4 in Table A-i. The user-
supplied SNR is based on the formula

a - (A2 + A2)/2c2

1 2

and is used for both real and complex valued signals. Results of such simula-
tions are recorded in Section IV. C.
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